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Abstract 

Accurate and timely predictions of airline pushbacks can potentially lead to im- 
proved performance of automated decision-support tools for airport surface traffic, 
thus reducing the variability and average duration of costly airline delays. One factor 
which affects the realization of these benefits is the level of uncertainty inherent in the 
turn processes. To characterize this inherent uncertainty, three techniques are devel- 
oped for predicting time-to-go until pushback as a function of available ground-time; 
elapsed ground-time; and the status (not-started/in-progress/completed) of individual 
turn processes (cleaning, fueling, etc.). These techniques are tested against a large 
and detailed dataset covering approximately lo4 real-world turn operations obtained 
through collaboration with Deutsche Lufthansa AG. Even after the dataset is filtered 
to obtain a sample of turn operations with minimal uncertainty, the standard deviation 
of forecast error for all three techniques is lower-bounded away from zero, indicating 
that turn operations have a significant stochastic component. This lower-bound result 
shows that decision-support tools must be designed to incorporate robust mechanisms 
for coping with pushback demand stochasticity, rather than treating the pushback 
demand process as a known deterministic input. 

1 Introduction 

Since deregulation in 1978, steadily growing demand for air transportation has exposed 

bottlenecks in the National Airspace System where traffic can easily outstrip capacity. 

Widespread criticism of the resulting delays and instability has driven the development of 

procedures and automation to  accommodate the increased demand. From the viewpoint of 

air traffic control (ATC) and much of the flying public, this accommodation has focused on 

handling an increasing number of jlzghts. There is a wide-ranging and substantial research 

literature devoted to  proposed improvements for all phases of flight, from optimal routing 

during the taxi-out process to alerting systems for runway incursion after landing. 
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Figure 1: Flight-centric observability of air transportation. 
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For airlines the increasing traffic volume h,zs led to larger and more complex problems 

of resource scheduling and synchronization in their ground operations. The interval from 

onblock to offblock is the proprietary business of these privately-held airline corporations, 

and published research on ground operations is quite sparse. Unlike “flights”, there is not 

even a single terminology; “ramp operations”, “turn process”, “ground event” ! and “ground 

handling” are all in common use. One debilitating consequence of this paucity of research 

and collaboration is the lack of standardized efficient procedures and automation to smooth 

the transitions between inbound flights, ground operations, and subsequent outbound flights. 

In analogy with handoff procedures in air traffic control, the natural design of such 

transitions requires that each agent (ATC, airport authorities, and/or the airline) controlling 

a particular process must estimate the time when control authority will transition to  the next 

agent. A critical design/performance constraint for such handoff procedures is the level of 

uncertainty inherent in the turn process, or equivalently, the quality of available real-time 

observations of the turn process. Any handoff procedure (and associated decision-aiding 

tools and automation) must robustly cope with this inherent uncertainty. It is also the 

case that this inherent uncertainty affects the potential benefits from investing in improved 

transitions, and is thus an important factor in developing the business case to  support such 

investments. 

This report presents some of the first analyses of ground operations to  support robust 

solutions for the ground-flight transition problem. Motivation for this research is presented 

in Section 2, including a survey of technical projects in airport surface traffic planning 

where pushback forecasts play an important role, and an approximate model of the value 

to  airlines of a well-maintained schedule. Section 3 describes the real-world dataset used in 

these analyses. Based on these data, Section 4 analyzes the performance of several techniques 

for forecasting pushback times. The results show that, even when using the best currently- 

available observations in situations of minimum uncertainty, there is still a significant lower 

bound on the remaining uncertainty inherent to the turn process, and thus an upper bound 
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on the predictive power of any technique for forecasting departure demand. Conclusions are 

discussed in Section 5. 

2 Motivation 

2.1 Decision-support tools for airport surface traffic 

One goal of the FAA’s Free Flight Phase I1 program is the development of decision-support 

tools (DSTs) for airport surface traffic [15]. The role of these DSTs is to  automate some of 

the monitoring, prediction, control and management tasks currently performed by air traffic 

controllers responsible for airport surface traffic. The proposed benefits include increased 

airport throughput, higher efficiency of taxi operations, and improved economic performance 

for air carriers. These benefits must be achieved without increasing controller workload or 

sacrificing system safety. 

At the present time several such DSTs are deployed and/or undergoing active research 

and development. NASA Ames Research Center in cooperation with the FAA has developed 

the Surface Movement Advisor (SMA) currently in use at ATL and partially deployed at sev- 

eral other major airports [9]. The Surface Management System (SMS) is a newer Ames/FAA 

cooperative project which is presently being developed and field-tested at MEM [3]. Both 

SMA and SMS have been implemented for use in ATC towers and airline stations to provide 

real-time status information and shared awareness on airport surface traffic. In particular 

both systems make significant contributions to maintaining controller situational awareness 

with respect to expected future departure demand, runway queue lengths, taxi-out delays 

and airport departure rates for multiple possible tactical scenarios. The Center for Advanced 

Aviation System Development (CAASD) at MITRE is developing the Departure Enhanced 

Planning and Runway/Taxiway Assignment System (DEPARTS), an optimization-based tool 

which incorporates current airport conditions, departure demand, taxiing aircraft status, 

downstream traffic flow restrictions and user preferences to optimally assign and sequence 
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traffic to taxi routes, runways and departure fixes [7]. The Ground-Operation Situation 

Awareness and Flow Efficiency (GO-SAFE) concept is currently under development at Op- 

timal Synthesis Inc. [5 ] .  This tool has a similar technical focus and optimization-based 

approach as DEPARTS. However rather than being integrated into the ATC towers and 

airline stations, GO-SAFE is geared more towards use on the flight-deck to provide precision 

guidance, navigation and clearance delivery during the taxi process. Additional tools may 

also be under development; these four demonstrate the range of technical approaches and 

human-factors integration issues for DSTs for airport surface traffic. 

The published literature on these DSTs states two common engineering assumptions re- 

lated both to feasibility and performance. The first assumption is the availability of surface 

surveillance data, e.g. from multiple-sensor systems such as ASDE-X. For example, selection 

of MEM as a development site for SMS was influenced by the presence of existing infras- 

tructure for the FAA’s Safe Flight 21 program which duplicates ASDE-X performance [2]. 

Similarly initial modeling and site-adaptation of DEPARTS focused on ATL due to the avail- 

ability of infrastructure from the SMA program [6]. The FAA is currently pursuing advanced 

surface surveillance through the ASDE-X program, and it is not unreasonable to expect that 

many airports will have the necessary infrastructure within the roll-out timeframe of current 

DST projects. 

The second assumption is the availability of accurate and timely departure demand fore- 

casts, where departure demand is interpreted as air carrier pushbacks at airports where 

movement on the ramp is under FAA control, or arrival of aircraft to ramp/taxiway transfer 

points at  airports where ramp movement is under airline control. For example, in the SMS 

proposal one of the primary reasons cited for the selection of MEM as an initial site was the 

availability of partial pushback information from the two major carriers (Northwest Airlines 

and Federal Express) [18]. Similarly the selection of ATL for DEPARTS was influenced by 

the existing SMA infrastructure 161. 

There is published research on the sensitivity of DST performance benefits (for DEPARTS 
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in particular [SI) with respect to pushback time forecast uncertainty and forecast horizon. 

In that study, a probability distribution was experimentally derived for the pushback time 

“error”, defined as the difference between a flight’s scheduled ready-for-pushback as per 

the flight plan, and the actual ready-for-pushback. This probability distribution was then 

scaled and shifted (under the side-constraint of preserving the coefficient of variation) to  

produce errors with mean absolute deviation of 0%, 20%, . . . , 140% of the observed mean 

absolute deviation. Preliminary results showed that reduction from 100% (the baseline 

observed case) to 0% (perfect prediction of ready-for-pushback over a lOmin horizon) coupled 

with the DEPARTS optimization engine reduced the average taxi-out time of each flight by 

approximately 1/3min; roughly half of this benefit occurred in the reduction from 20% to  

0%. In an additional set of experiments, when DEPARTS was given perfect predictions of 

ready-for-pushback time over a finite timehorizon, the decrease in average taxi-out time per 

flight varied linearly with the length of the time-horizon. These preliminary results were 

later replicated and extended; see [7] .  

The problem of producing higher-quality forecasts of ready-for-pushback times, with 

reduced uncertainty over longer horizons, has been considered in the literature. For com- 

parison, the DEPARTS study [6] was based on operations recorded at ATL in August 2000 

including 18,586 observations of pushback time errors with magnitude less than one hour. 

This sample had mean 6.8min, standard deviation 12.6min, and mean absolute deviation 

8.5min. It was noted in that study that pushback times at ATL have relatively low uncer- 

tainty compared to many other US hub airports. 

Pushback forecasts at forecast horizons of zero to six hours from the Collaborative Deci- 

sion Making (CDM) program frequently show errors with mean absolute deviation in excess 

of 20min even under the best weather and traffic conditions, while the mean absolute devia- 

tion can exceed 1.5hrs under poor conditions [17]. Based on an heuristic model of the internal 

airline decision-making processes of cancellations, swaps, intentional delays and hastening, 

Vanderson was able to reduce this prediction error by 0 to 30% [17]. In related work, the 
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Aircraft Sequencing Model (ASM) constructed in [ 11 was an optimization-based model which 

minimized passenger delay by modifying aircraft pushback times given constraints on the 

arrival sequence and timing, departure schedule, and gate and crew resources. Andersson 

selected a hub airport and used actual operations data over the 16:OO-19:15 time-period on 

twelve successive days to show that the ASM yielded pushback predictions with standard 

deviation of 9 to  19min. An important caveat is that  the ASM model assumed deterministic 

inputs including a perfect forecast of landing times over each 3.25hr period; landing times 

often show variability on the order of flOmin as enroute aircraft approach the terminal 

area and encounter congestion and/or holding stacks [9]. Note that the forecasts developed 

in these studies have not shown uncertainty or horizons significantly better than the “raw” 

results observed in the DEPARTS study. 

The continued development of DSTs is justified by the proposed benefits that will accrue 

to  both ATC and air carriers. Current DST designs assume the availability of forecasts 

for upcoming pushbacks. This assumption is important enough to significantly affect which 

airports are selected for initial modeling, site-adaptation and integration. Furthermore the 

estimated benefits are known to  be sensitive to both the uncertainty and horizon over which 

such forecasts are available. However only a handful of airports and airlines possess the 

necessary infrastructure to provide high-quality forecasts, while improved forecasts based 

on modeling the internal airline decision processes have not yet improved on simple “raw” 

forecasts (i.e. the ready-for-pushback time filed in the flight plan). We are not aware of 

research explicitly aimed at overcoming the technical hurdle of building such DSTs with 

only “raw” forecasts, nor of developing the business case to support airline and/or airport 

investment in the necessary infrastructure. There is a pressing need for further work in these 

areas. 
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2.2 The value of a well-maintained schedule 

Much of the current R&D invested in DSTs for airport surface traffic is motivated by the 

needs of air traffic controllers. However, DSTs can also have significant benefits for air carri- 

ers. A reduction in surface traffic delays and uncertainty at one of an air carrier’s hub airports 

can be leveraged to increase market share, reduce direct operating costs, etc. In addition, 

air carriers which invest in the necessary infrastructure to produce improved pushback fore- 

casts may also see concomitant internal benefits such as improved situational awareness in 

airline operations centers and an increased ability to monitor, review and streamline internal 

processes. Note that these internal benefits are difficult to  quantify without information on 

proprietary airline operations, and thus t8his report will focus on t,he potential for reduced 

delays and uncertainty. 

The proper definition of “delay” is much debated in the research literature on air trans- 

portation. The US Department of Transportation (US DOT) collects and publishes statis- 

tics derived from the general rule-of-thumb that a flight which arrives onblock no more than 

15min after scheduled arrival is “on-time” . The corresponding Association of European Air- 

lines (AEA) punctuality metric is adapted to  the high variability of European enroute air 

traffic congestion: any flight which goes offblock no more than 15min after scheduled depar- 

ture is considered “on-time” . While these statistics have partially increased the transparency 

of the air transportation product for the traveling public, these definitions of delay do not 

capture the full complexity of maintaining a schedule of operations in an uncertain operating 

environment. 

There are three main groups which benefit when an airline’s schedule of operations is 

well-maintained: the traveling public, the ATC system, and the airlines themselves. In this 

general division of concerns, the ATC system is intended to include both national enroute 

ATC and local airport authorities, and similarly when referring to the airline, the term is 

intended to additionally include all of the aircraft servicing contractors involved in ground 
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operations. If one were simply to examine the US DOT or AEA delay statistics, it would 

be natural to assume that the costs experienced by these groups are roughly similar and are 

strictly linked to  delayed flights. On closer examination, each of these groups incurs several 

different types of costs which do not scale in proportion to delay. Furthermore there can 

also be significant costs associated with flights which arrive or depart substantially earlier 

than scheduled; this justifies consideration of the larger problem of “schedule maintenance”, 

of which minimizing delays is a significant component. Note that it is common practice 

to speak of delayed events and the corresponding delay, but a suitable antonym is lacking. 

Hence in this report an event which occurs prior to its expected or planned occurrence will 

be referred to as a hastened event with some corresponding haste. 

The traveling public’s direct valuation of delay and haste is difficult to measure. From the 

viewpoint of the ATC system and the airlines, passengers’ valuation of their time is easiest to 

measure by proxy. As noted in the Introduction, the ATC system has come under increasing 

criticism as easily observed by the number and stated cause of passenger complaints. In high- 

demand markets where increased delays on one itinerary may drive passengers to substitute 

alternate itineraries or other forms of transportation, Januszewski [ 1 I] derives a marginal 

price-change of approximately $1USD per fare per minute of additional delay. For example, 

if passengers had the perception of an average five-minute delay on an hourly shuttle flight 

taking 6-7 trips per day and typically carrying 100 passengers, a marginal price-change of 

that  magnitude could easily cost an airline $100,00OUSD in missed profits over the course of 

a month. A hastened flight could also cut into revenues if it arrived sufficiently early so that 

no gates were available; passengers are equally discomfited waiting to taxi in to the gate as 

they are waiting to  depart. 

A hastened flight wastes passengers’ time, while flight delays lead to missed connections, 

cancellation of important meetings, and even unplanned overnight stays. However for an 

airline the effect of delays on a single flight-leg can also be magnified due to cascades of 

disruptions as later operations which share resources (crew, airframe, pax, etc.) with the 
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first disrupted flight-leg are affected. This propagation effect can be modeled as a delay 

mult ipl ier  by which the initial flight delay is scaled to account for the total delay incurred 

in the entire cascade [4]. While the exact values of the delay multipliers found in that 

study cannot be directly translated into other situations (e.g. different schedules, operating 

conditions, disruption recovery procedures, etc.), two important effects were observed: the 

additional delay due to the cascade effect (corresponding to the portion of the delay multiplier 

in excess of 1) tends to  increase linearly with both the initial delay and the time-to-go until 

the end of the operational day. The former effect suggests that even if delays have a constant 

marginal cost as suggested by Januszewski, the total cost to the airline increases no slower 

than the square of the initial delay. The latter effect then suggests that delay costs should 

be linearly discounted as the operational day progresses. In a minor abuse of the standard 

“big-0” notation of computer science, 

delay cost = S2(Tminus . delay2) 

where Tminus is the time remaining until the end of the operational day. 

Given this general cost-structure on delays, it is natural to consider what penalties or 

benefits could accrue from hastened flights. As noted above, flights which arrive or depart 

sufficiently ahead of schedule waste passengers’ time and can artificially create gate short- 

ages and congestion. However it is also apparent that arriving or departing just a little 

early is generally useful since it provides a small buffer against possible future delays and 

gives passengers the impression that everything is running smoothly. To incorporate these 

observations, this report assumes an airline cost structure of the form 

cost = Q: Tminus . deviation . (deviation - p) .  (1) 

where Q and ,O are nonnegative constants and deviation is defined as the scheduled minus 
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the actual time of an event. For negative or large positive deviations, the cost is positive 

as expected. However for small positive deviations, when the actual time occurs before 

scheduled but the deviation is smaller than p, the cost is negative indicating a desirable 

outcome. 

This cost structure can be used to  produce “optimal” forecasts of pushback times, by 

minimizing the expected cost of deviations between the actual and forecast time-to-go over 

the duration of the forecast. This topic is treated in greater detail in Section 4. In addition 

there is an important conceptual message: cost does not scale in proportion to average delay 

or haste, and cost increases as the dispersion of deviations increased. In concrete terms, 

twice the delay can cost four times as much, and a flight which is delayed by 5 f lmin will 

always be more expensive than a flight which is delayed by 5min. It is natural for air carriers 

to include buffers and deliberate slack-time in their schedules in order to  stay on-time and 

robust in the face of uncertain operating condtions. However there are significant reasons 

to  keep the length of these buffers and all controllable sources of uncertainty under careful 

scrutiny to avoid rapidly ballooning costs. 

3 Observing the turn process 

While detailed real-time and historical data are available for the different stages of flight, 

until recently very few data have been automatically collected during ground operations. 

This lack of observability has blunted efforts to understand and improve these processes. 

However, as part of the Operational Excellence on-time initiative by Lufthansa Airlines, 

the ALLEGRO project was brought into operation: a unique real-time control and analysis 

system for airline ground operations [16]. Special focus was laid on the correct definition 

‘In fact this notion can be made precise. Suppose two processes with respective deviations TI and 
T2 have the same average deviation E[T1] = E[Tz], but TI Sdisp T2 using the definition of stochastic 
dispersion order Sdisp from 113, p. 40). Given this order on the deviations, it immediately follows from 113, 
Corr. 1.5.4(a), Thm. 1.7.6(b)] and the convexity of the cost structure that the mean, mean square, mean 
absolute deviation and variance of the costs must be similarly ordered. 
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of target times for each process of the turn. During ground operations on a single aircraft, 

ALLEGRO’S monitoring function collects timestamps for up to 80 distinct types of events 

and compares them against the respective target times. The use of ALLEGRO increases 

the transparency of ground events, supports the hub control center in coordinating ground 

events, simplifies analyses of weaknesses in each process, enables continuous validation of 

the baseline schedule for ground events, and provides a foundation for internal and external 

performance agreements. 

The analyses in this paper are based on a dataset of 17,344 turnaround operations ob- 

tained from the Lufthansa OBELISK data-warehouse, of which ALLEGRO is a subsystem. 

These turns were continental operations on Lufthansa which transited Frankfurt Interna- 

tional Airport (FRA) between l Feb 2003 and 30 Apr 2003. For each transit through FRA, 

several observations were captured in OBELISK: 

0 Inbound and outbound flight parameters. 

These included aircraft type; flight numbers; connecting airports; scheduled, estimated 

and actual times for gate-arrival and pushback; scheduled and actual en-route and block 

times; and standardized delay codes. 

0 Ground operations data (from the ALLEGRO system). 

Both scheduled and actual ground time intervals were specified, and further subdivided 

into scheduled and actual start/end epochs for deplaning, cleaning, catering, fueling, 

and boarding. The type of pax-loading equipment (either bus or jetway) was also 

specified. 

The timing data for inbound and outbound flights, and scheduled intervals for ground events, 

were reported with one-minute precision. The timing data for actual ground events were 

reported with one-minute or one-second precision depending on equippage. The accuracy of 

these data has been validated to the same order of magnitude as the reported precision [16]. 
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Figure 2: Illustration of ground operations data. 

4 Inherent uncertainty and robustness 

The airline decision processes involved in maintaining a schedule are substantially more 

complex than can be observed externally; to date modeling efforts aimed at mimicking these 

decisions have not significantly improved the quality of pushback forecasts. Uncertainty 

in pushback forecasts is partly due to the complexity of these decision processes (which 

may be amenable to improved models), and partly due to the natural inherent stochasticity 

of real-world operations (thus placing inherent lower bounds on the quality of any such 

forecasts). The ALLEGRO system enables novel analyses of this complexity/stochasticity 

factorization. Airline decision processes related to cancellations, swaps of crews or airframces, 

and intentional delay or hastening can be accounted for by examining those turns which 

were actually operated and the corresponding ALLEGRO target-times. A wide variety of 

exogenous sources of uncertainty can be filtered out using the delay codes attached to each 

turn. Thus it is possible to  focus attention on the inherent uncertainty of the airline turn 

processes. This minimum inherent uncertainty is an important limiting factor for any forecast 

of expected offblock (EOBT) since it implies a corresponding upper bound on the achievable 

forecast performance. 

To derive this upper bound, the dataset was filtered for simple turns, so-called because 
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Board: Bus Board: Jetway 
Deboard: Bus 3820 842 
Deboard: Jetway 157 6324 

Table 1: Sample sizes for predictability analysis. 

they occurred under the following set of conditions: 

0 Similar target-times for  the turn processes. No towing occurred; the aircraft departed 

from the gate where it arrived. Operations occurred on similar aircraft types which 

require the same scheduled time for each process in the turn. The same type of pax- 

loading equipment was used. Changes in target-times due to  different available ground- 

time (scheduled offblock niinus actual onblock) were accounted for. 

0 Only relevant delay-codes. Turns with delays due to late inbound crews or loads; 

local or downstream weather; and control imposed by ATC or the airport authority 

were excluded. Also delays due to abnormal aircraft maintenance requirements were 

excluded, since those delays did not directly impact the normal turn processes and 

hence were not directly observable in the ALLEGRO data. The remaining delay codes 

are specific t o  aircraft servicing processes. 

Some of these conditions may be anticipative, i.e. impossible to verify while a turn is actually 

taking place rather than after the fact. Hence this subset of turns yields a conservative 

approximation of the actual minimum uncertainty; real-world performance is guaranteed to 

be noisier. The first three conditions yielded a sample of 11,143 turn operations (64.2% of 

the total sample). Table 1 shows how these turns were further subdivided by the type of 

pax-loading equipment used on arrival and departure. Note that it is sometimes necessary 

due to customs or security measures to use different types of pax-loading equipment on the 

arrival and departure of the same aircraft; this does not indicate the aircraft was towed or 

otherwise changed gates. 

Two caveats should be noted for the jetway-jetway turns. First, only limited data were 
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available on the end of deboarding for turns using jetways, since the method for measuring 

that epoch was not finalized in ALLEGRO at the time these data were collected. Second, 

ALLEGRO measures the end of boarding for jetway-jetway turns as the moment when the 

cabin doors are closed, an event which typically is only indirectly related to the actual end 

of boarding. For example, a flight delayed by ATC might need to have the crew swapped; or 

if a maintenance delay occured, the captain and maintenance personnel might re-open the 

cabin doors to perform inspections. However) for these and many other possible sources of 

error, there are corresponding delay codes and hence the affected turns have been filtered 

out and do not affect our results. In this report we focus on the 3820 bus-bus simple turns, 

which yield results based on the best available observations. The results for the other simple 

turns axe similar and have been elided for brevity. 

Given the same set of simple turns, a variety of statistical techniques can be used to 

forecast pushback times. The simplest forecasts are updated only once: once the available 

ground-time is known, the turn duration is forecast using descriptive statistics such as the 

mean, median or some percentile of observed turn durations. Any system with monitoring 

capabilities equivalent to  ALLEGRO enables more sophisticated techniques. Age-based fore- 

casts use the elapsed duration of a turn to compute a Bayesian estimate of the remaining 

time-to-go. A conceptually orthogonal status-based approach depends on the updated sta- 

tus (not-started/in-progress/completed) of the different processes comprising a turn. In the 

remainder of this section) age- and status-based forecasts are formalized and their actual 

performance against the ALLEGRO dataset is compared. 

It is important t o  note that combined forecasts using both process status and the elapsed 

duration of each process cannot be derived explicitly from the available data. Even a dis- 

cretized state-space for such a combined forecast would be many orders of magnitude larger 

than the number of real-world turn operations available for calibrating the forecast statis- 

tics. The most common approach proposed in the DST research literature is the use of 

simple descriptive statistics, a plan which is immediately workable, but ultimately limited 
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in performance by this “curse of dimensionality”. 

4.1 Forecasts using simple descriptive statistics 

A simple analysis of the data shows that predicting the actual ground-time based on the 

scheduled ground-time has several drawbacks. In Figure 3 the bus-bus simple turns have 

been binned according to scheduled ground-time. The sample of turns in each bin is then 

described by a boxplot of the corresponding sample of actual ground-times2. From the plot, 

the minimum ground-time is reasonably apparent. The median of actual ground-time tends 

to  track the scheduled ground-time, indicating that onblock and pushback typically occur on 

schedule. However the variability of actual ground-time as a function of scheduled ground- 

time is very high. This variability leads to poor predictions of actual ground-time given 

scheduled ground-time. 

Much of this variability can be compensated for by replacing scheduled ground-time with 

available ground-time. In particular the effect of early or late inbounds can be accounted 

for. The resulting substantial decrease in variability is shown in Figure 4. It is possible to 

predict actual ground-time with much reduced uncertainty given the available ground-time; 

even this simple information may thus be very useful for developing DSTs with significant 

benefits. However it is also important to note that, due to the possible need for cancellations 

or swaps, the available ground-time cannot always be determined based on the arrival time 

of an inbound flight and the scheduled assignment of this inbound aircraft to  an outbound 

flight. Since our dataset only describes turns which actually occurred, this problem does 

not affect our analyses. It is an interesting open question to determine how soon an airline 

station could accurately determine the available ground-time, i.e. how soon an airline station 

can accurately claim that a particular outbound flight will not be cancelled or swapped. 

2Boxplots are a standard statistical method for robust visualization of scalar data. The “box” in a boxplot 
covers the interquartile range, with a line through the middle of the box to denote the median. This gives 
a robust estimate of the central tendency and dispersion of the data. The box has “whiskers” extending 
to the farthest datapoints within 1.5 times the interquartile range of the median. Observations outside the 
whiskers are marked individually; these are often treated as possible outliers. 
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Figure 3: Actual ground-time as a function of scheduled ground-time. 

Figure 4: Actual ground-time as a function of available ground-time. 
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Figure 5:  Instantaneous forecast error e ( t ) .  

4.2 Bayesian forecasts using elapsed ground-time 

The previous section demonstrated that, given the available ground-time, it is reasonable 

to forecast pushback using the average actual ground-time. This initial forecast can be 

significantly improved by using the elapsed ground-time to compute updates, especially for 

turns which are running unusually late and have exceeded the average actual ground-time. 

For a turn with some given available ground-time, let the random variable X denote the 

actual ground-time. Characterize X by its complementary density function G(t)  = Pr(X > 

t ) ;  for convenience the parametrization by the available ground-time is elided. At elapsed 

time t since onblock, the "perfect" forecast of time-to-go is simply X - t .  To approximate 

this perfect forecast, consider deterministic functions f ( t ) .  The instantaneous forecast error 

e ( t )  is then defined as the predicted time-to-go minus the actual time-to-go f"(t) - (X - t )  

as illustrated in Figure 5 .  

The optimal f ( t )  can then be constructed so that the expected total cost of these errors 
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according to the approximate quadratic cost-function of Equation (1) is minimized: 

f = argmjnEx [i” Q(m - (X - 4) * (m - (X - t )  - P )  d t ]  
{f } 

In Appendix A this is solved to obtain 

f ( t )  = E[X - t I X > t] 

Note that while f is defined by an 

P + -. 2 

integral over a random-length interval, the final result 

depends on a pointwise-optimal Bayesian estimate of the remaining life Lt = [X - t I X > t] .  

This form is doubly appealing since it both naturally incorporates observations of the elapsed 

turn-time {X > t }  and minimizes a reasonable cost-structure on the forecast error. 

The following theorem is useful for characterizing the remaining life: 

Theorem 1 (Remaining Life) The moments ofLt are given by 

A derivation is presented in Appendix A. It then remains to  approximate G given a set of 

samples of X. 

One approach is to estimate G nonparametrically. Given N iid samples (21, . . . , XN), the 

standard histogram estimate of G is G(t) = #{xi  > t } / N .  This estimate can be substituted 

for G to approximate the moments of Lt. In particular the first two moments can be used 

to  approximate the Bayesian estimate E [Lt] and its associated mean-square error Var (Lt) . 
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Figure 6: Illustration of G(t).  

From Equation (2), 

The integrals can be further simplified because G has zero derivative except at a finite 

sequence of times min{xi} = tl < - < tm = max{xi} as illustrated in Figure 6. Integrating 

over the intervals [ t k ,  t k + l ]  yields the identity 

} (3) 
t;+l - max{ t k - 1 ,  t}"+l 

n + l  

m lm #{xi > v}Vn dv = #{Xi 2 t k }  
k=l 

where t o  = 0. Note that the term #{x, 2 t k }  on the right-hand side is not a typo, as can 

be seen by examining the discontinuities in Figure 6. 

An alternative approach is to fit some known parametric distribution to the data and 

directly compute the integrals in Theorem 1. Note that many analytically defined random 

variables have smooth complementary distribution functions. In this case the hazard rate 
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r ( t )  = -$ In G(t )  is well-behaved. Remarkably one can then derive a simple closed-form 

recursion on the dynamics of E[LT] as a function of t: 

Theorem 2 (Hazard-rate Remaining Li fe  Recursion) 

For a nonnegative random variable X with bounded hazard rate r ( t ) ,  the moments of the 

remaining life Lt = [X - t I X > t] follow the recursion 

(4) 
- d E[Ly(t)]  = -nE[L:-'] + r ( t ) E [ L r ] .  
at 

A derivation is given in Appendix A. The dynamics of the mean pL = E[L,] and variance 

XL = Var(Lt) = E[LT] - E[LtI2 are of particular interest: 

This yields a convenient ODE for computing the mean and variance: 

This ODE can be easily solved numerically, e.g. using Matlab. 

To illustrate these approaches for approximating G, both approaches were applied against 
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Probability dlstnbution for 55min bus-bus turns 

Figure 7: Probability distribution of 55min bus-bus turns. 

the sample of simple bus-bus turns with 55min of available ground-time. These turns were 

selected because their available ground-time is close to the minimum available ground-time: 

they are neither guaranteed to be late nor guaranteed to have an excess of slack-time. The 

parametric (Gaussian) and nonparametric complementary distribution functions are shown 

in Figure 7. These complementary distributions are then used to  derive a pair of forecasts 

for ,B = 0 as shown in Figure 8. For turn durations where a large number of datapoints are 

available there is little difference between the two forecast functions. However, for exceed- 

ingly long turns which are correspondingly rare, the nonparametric forecast must depend on 

only a handful of datapoints and some deviations are apparent. 

For a specific sample of N turns, it is informative to  consider the average instantaneous 
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Age-based forecast (55mn bus-bus turns) 

\ 
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Figure 8: Age-based predictor for 55min bus-bus turns. 

accuracy a(t)  as a function of elapsed time: 

N ( t )  = {set of turns with duration 2 t }  

The corresponding forecast accuracies are shown in Figure 9. While substantially better 

than the forecasts previously published in the literature, there is still a significant lower 

bound on the uncertainty of the age-based forecasts throughout most of the turn. Note that 

the apparent accuracy of the parametric forecast may be somewhat misleading, since it is 

derived under the assumption that the underlying data is in fact drawn from a Gaussian 

distribution. 
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Age-based forecast accuracy as a function of time (55mn bus-bus turns) 

- Raw data 
- Fitted Gaussian 

I I I I I I 

Elapsed time s i w  onblock (minutes) 

Figure 9: Age-based predictor: uncertainty as a function of time. 

4.3 Forecasts using coupled updates of process status 

Another reasonable approach for forecasting pushback time is to  track the status (not- 

started/in-progress/completed) of the different processes composing a turn. Each process 

in a turn (e.g. catering) has a characteristic start-time and duration based on the available 

ground-time, and typically must occur in sequence with some predecessors (e.g. deplaning) 

and successors (e.g. boarding). If a process was running unusually late, one would expect 

this lateness to be transmitted to the successors and thus pushback to  be correspondingly 

delayed. This assumption, that the processes can be divided into a sequence of phases, can 

be encoded into statistical models of varying complexity. It is expected that airline and air 

traffic controllers often use mental models of this form where the cause of an unusually late 

pushback is ascribed to a particular phase running late [la].  

A turn can be approximately divided into three phases with stochastically independent 

durations: deplaning followed by “servicing” (catering, cleaning and fueling) followed by 

boarding. A turn which is running late is of greater importance operationally (early turns 
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are usually easy to  delay), and thus the servicing phase is defined in such a way as to focus 

on whichever process is limiting. In particular the start of servicing is defined as the actual 

start-time of the subprocess which is scheduled to end last; the end of servicing is defined 

as the time when all three processes have completed. Under these assumptions the expected 

time-to-go until pushback is solely dependent on the available ground-time, the most recent 

status update, and the time elapsed since that update. 

It is reasonable to expect that a turn with more available ground-time would not have 

shorter process durations. Furthermore, since the data were measured under real-world o p  

erating conditions where the deviation in each process was being monitored and controlled 

in real-time to adhere to the ALLEGRO target-times, for each process the amount of vari- 

ation in time-to-go should be roughly constant with respect to  the available ground-time, 

and should represent the minimum level of operationally acceptable (achievable) deviation 

around target-times. This expected behavior can be formalized by assuming that in a turn 

with available ground-time z, each process k is normally distributed with mean pk(z) and 

variance &(x) where p k ( z )  is non-decreasing and A,(%) is constant. 

Under these conditions the optimal regression of p(z) is given by the PAVA algorithm [14] 

which essentially smoothes the usual estimated averages pest (z) to enforce the non-decreasing 

constraint. Note that using a standard regression would implicitly enforce the contrary 

assumption that turns with different available ground-time have no relationship at  all. The 

smoothing effect can be seen by comparing Figures 10 and 11. The monotonic regression is 

able to pool information among turns of similar available ground-time, resulting in a much 

larger effective sample size and reduced noise. 

The status-based forecast is constructed from the monotonic regressions as follows. When 

a turn of scheduled duration z arrives onblock, the initial forecast of time-to-go until offblock 

is just the average duration. As the turn progresses, the forecast counts downwards at a 

constant rate of -lsec/sec. When a phase of the turn changes status (starts or stops), the 

forecast is updated to  the average time-to-go for that particular status change, and again 
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Figure 10: Average time-to-go as  a function of process status. 
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Figure 11: Average time-to-go, smoothed via PAVA algorithm. 
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the forecast again counts downwards at a constant rate of -lsec/sec. This straightfoward 

method of updating the forecast is sufficient for the majority of turns in the dataset. There 

are two conditions in which the update method is modified. If the predicted time-to-go 

until offblock is less than the actual time-tc>-go until the next change in process status, the 

forecast is not allowed to become negative but instead is held at  zero. Also, if some process 

starts or finishes unusually early, the straightforward update method may produce a forecast 

which indicates the turn will take less than the minimum ground-time. When such a case 

arises, the forecast is instead updated to  the minimum feasible remaining ground-time (i.e. 

the minimum ground-time minus the elapsed time). 

Four examples are shown in Figures 12 through 15. To help characterize the quality of 

each forecast, an average forecast accuracy is computed for each turn: 

Forecasts for bus-bus flights which had punctual departures are shown in the first two figures; 

the following two figures correspond to delayed flights. For comparison each plot also shows 

the forecast based on available ground-time, and the “perfect” forecast based on the actual 

duration. Forecasts with good performance are shown in Figures 12 and 14. In particular 

for the late turn in Figure 14 the forecast successfully adapts to haste and delays in the turn 

processes and thus minimizes the forecast inaccuracy. In contrast, possible problems with 

status-based forecasts are shown in Figures 13 and 15, when phases deviate significantly 

from their expected times. 

The average instantaneous forecast accuracy for a subset of the simple bus-bus turns is 

shown in Figure 16. Again a lower bound on the forecast accuracy throughout the turn is 

plainly apparent. In Figure 11 the average time-to-go clearly decreases as successive phases 

start and finish. However the standard deviation of the forecast accuracy in Figure 16 never 

drops below f5min.  For planning purposes, while at first glance it may appear desirable 
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Status-based lorecast (a = 3.5 min) 
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Figure 12: Status-based predictor: good performance on on-time flight. 

Figure 13: Status-based predictor: poor performance on on-time flight. 
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Figure 14: Status-based predictor: good performance on late flight. 
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Figure 15: Status-based predictor: poor performance on late flight. 
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Figure 16: Status-based predictor: uncertainty as a function of elapsed time. 

for airlines to  supply downstream agents (airport and/or ATC) with every possible status 

update, the actual data only provide ambivalent support for this proposal. 

A third metric for the forecast accuracy is the average instantaneous accuracy as a func- 

tion of time-to-go (rather than elapsed time). It is natural to  expect that the forecast 

accuracy should steadily improve for forecasts closer to the actual pushback. This expected 

behavior is observed in practice as seen from Figure 17. This result confirms that the status- 

based predictor is indeed behaving correctly; the lower bound observed from Figure 16 is 

due to the fact that the actual time-to-go is relatively uncertain and of course cannot be 

observed directly. 

4.4 Combined pushback forecasts using status and age 

At first glance, combining status-based and age-based forecasts should result in higher model 

fidelity and improvements in forecast accuracy. The obvious approach is to  interpolate 

between status updates using the age-based equations. However the state-space over which 
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Figure 17: Status-based predictor: uncertainty as a function of time-to-go. 

such a combined forecast is defined rapidly becomes enormous. Assuming there are three 

phases in a turn (deboard, service and board), and that the start/end epochs for each phase 

have only three possible observations (delayed, on-time or hastened), there are 36 = 729 

possible states to consider. Even a small improvement to this model such as adding a new 

epoch (actual onblock) and more accurate observations (very delayed or very hastened) 

increases the number of states to 57 = 78,125; this is already 4.5 times larger than our 

current dataset covering 3 months of operations at a major hub airport, and nonparametric 

calibration of such a model is plainly infeasible. 

The status-based forecast avoids this problem by assuming the phases have stochasti- 

cally independent durations, while the age-based forecast has only a single continuous state- 

variable. Similar simplifying assumptions on the stochastic dependencies between processes 

must be made to yield a tractable combined forecast. For this purpose we propose a bound- 

ing technique. Under this bounding technique, the probabilistic distribution of each state 

variable is upper- and lower-bounded with a pair of Gaussian random variables. The “lower” 
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Gaussian has lower variance and is stochastically smaller; the “upper” Gaussian has higher 

variance and is stochastically larger. Dependencies among the state variables are encoded 

as correlations among the Gaussians: first the linear correlation coefficients of the raw data 

are computed, and then the upper/lower Gaussian bounds are scaled to  leave the variances 

unchanged but the covariances fitted to produce identical correlation coefficients. This idea 

currently appears promising and is being systematically applied and validated using the 

ALLEGRO data. 

5 Conclusions 

Given their importance in maintaining an efficient and reliable air transportation system, it 

is remarkable that ground operations are not more transparent t o  both air traffic controllers 

and airline stations. Several decision-support tools for airport surface traffic are now in 

development, and there is published research linking the potential ATC benefits of these 

tools to the availability of accurate and timely pushback forecasts. Under weak assumptions 

on the structure of revenue loss due to deviations from schedule, airlines also stand to benefit 

financially from these ATC improvements through reductions in either the variability and/or 

average duration of ground delays. 

However, airlines with the necessary infrastructure to provide such forecasts are the 

exception rather than the rule. To date only a few carriers have gone ahead and internally 

justified the business case to support infrastructure investment. It is worth noting that 

while current DST development and deployment has been heavily dependent on these well- 

equipped carriers, the extension of these DSTs to sites beyond the initial prototype airports 

may be significantly handicapped by a lack of high-quality pushback forecasts, an issue which 

has received little treatment in the literature. 

Through collaboration with one of the best-equipped carriers, Deutsche Lufthansa AG, we 

have been able to perform several analyses supporting the development of the necessary high- 
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quality pushback forecasts. The simplest age-based forecasts only need measurements of the 

available and elapsed ground time for a given aircraft. The required investment is minimal 

since most major air carriers already record the onblock epoch automatically, and then the 

available ground time can be reported as soon as the onblock aircraft is paired operationally 

(i.e. barring any equipment swaps or mechanical cancellations) with an outbound flight. 

A more advanced status-based forecast integrates measurements of the many sub-processes 

in a turn. Automatic measurement of the start/completion times for all turn processes 

requires a larger airline investment, although there are concomitant benefits since each airline 

station gains the ability to  continuously monitor, analyze and streamline its operations. For 

example, by comparing Figures 11 and 17, it appears in this case that forecast accuracy is 

better around the expected completion-times of each phase, and tends to  be worse mound 

the expected start-times. One possible interpretation is that  individual phases are relatively 

well-controlled but that the gaps between phases are not as tightly regulated. This type of 

insight may help airline stations to  optimize their internal processes. Finally, a proposal for 

a combined forecast based on both age and process status is now being tested. 

Even after carefully filtering out a sample of real-world turn operations expected to ex- 

hibit minimal uncertainty, the standard deviation of forecast error for all of the forecast 

techniques is lower-bounded away from zero, indicating that turn operations have a substan- 

tial stochastic component. This intrinsic stochasticity imposes design and performance con- 

straints on any automation or decision-aiding tool intended to smooth ground-flight handoffs. 

Such systems must be ready to cope with at least as much uncertainty in forecast pushback 

times and departure demand as reported above. 

Rather then sending intra-ground event timestamps ( e g  cleaning ends, boarding begins, 

etc.) to all agents, the efficient strategy is for each air carrier to inform succeeding agents 

with only relevant but precise information: the predicted time-to-go until offblock for each 

flight, including the expected accuracy of each prediction. Ramp and ground controllers 

can then use methods such as those developed in [lo] to predict the airborne time based 
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on various historic data (e.g. taxi-out times based on parking position and runway) and 

real-time data (e.g. number of aircraft on apron heading to  takeoff position), launching the 

flight into the ATC system. Accurate pushback predictions can lead to accurate estimates of 

departure demand, useful both for ATC planning purposes and for propagation downstream 

to provide improved predictability of arrival times to downstream airline stations. 
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A Derivations for Bayesian age-based forecasts 

A. 1 Age-Based Forecast 

Consider a nonnegative random variable X. When X is the lifetime of some object or 

process, Lt = [X - t 1 X > t] is the remaining life given that the lifetime has exceeded some 

threshold t .  It is of interest to forecast the remaining life via a deterministic function f ( t )  

to  minimize the expected integrated quadratic cost 

where cy and p are fixed nonnegative location/scale parameters. 

Note that the expectation operator and the integral cannot be directly exchanged since 

both the integrand and the integration interval depend on X. Let F ( z )  = Pr(X 5 t )  be the 

cumulative distribution of X. Then the arg-min of J can be explicitly expanded as 

roo rx 
a ( f ( t )  - (X - t ) )  . ( f ( t )  - (X - t )  - p) d t  d F ( z ) .  J, J, arg min J(f) = arg min 

tf 1 
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Assuming the integrals converge and can be exchanged, this yields 

Expanding the inner integral (and neglecting a 2 0) yields 

Assuming the last two terms converge, they do not affect the arg-min and can be ignored. 

The remaining terms can be simplified by inspection and substituted into the outer integral 

to  yield 

a rgminJ( f )  = argmin ( f z ( t )  - Pf ( t ) )G( t )  - 2f(t)G(t)E[X - tJX > t] d t .  
If } 

In this case f does not need to be minimized as a whole function but only pointwise. For 

fixed time t ,  f ( t )  can be treated as an unconstrained free parameter: 

- a { f 2  - (2E[X - tlX > t] + P)f} = 0 
af 

2f - (2E[X - tIX > t] + P )  = 0 

+ f ( t )  = E[X - tlX > t]  + 5 P 

A.2 Remaining Life Theorem 

It is thus of interest to compute the moments of Lt. In this case it is more convenient to 

characterize X by its complementary distribution G(t)  = Pr(X > t ) .  For any nonnegative 
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random variable Z one has the identity [8, p. 81 

E[Z] = lrn Gz( t )  d t .  
0 

For n E N+ and t ,  r 2 0,  Ly is nonnegative with complementary distribution function 

Pr(Ly > r )  = Pr((X - t)" > r I X > t )  

+ t I x > t )  = Pr(X > 

Applying ( 5 )  yields the desired result: 

= lrn g n ( v  - t)"-l dv 

A.3 Hazard-Rate Remaining Life Recursion 

Recall Liebniz' integral rule: 

For the case n = 1, 
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while for n > 1, 

= -n E [Ly-'1 + r(t) E[L;] 

It is necessary to make two separate derivations since different terms from the right-hand 

side of Liebniz' integral rule are contributing in each case. Except in the trivial condition 

LO = 0, however, E [Lf] = E [l] = 1 and a single formula suffices: 

a - at E [L;(t)] = -n E [LE"-'] + r(t) E [LE"]. 
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